Class graphs obtained from residual designs of new symmetric (71,15,3) designs

Tin Zrinski

Abstract

It is known that a residual design of a symmetric $(71,15,3)$ design that satisfies certain conditions leads to a strongly regular graph with parameters $(35,16,6,8)$, called a class graph. It is established in [5], 6], 7] and [3] that the 148 symmetric $(71,15,3)$ designs that were known until then produce exactly six class graphs. We show that 22 symmetric $(71,15,3)$ designs constructed in 4 lead to 344 new residual designs with parameters 2-(56,12,3), that produce five pairwise non-isomorphic class graphs. The corresponding class graphs are isomorphic to the previously known class graphs, so the 170 known symmetric $(71,15,3)$ designs produce exactly six class graphs being strongly regular graphs with parameters $(35,16,6,8)$.

Keywords: block design, residual design, class graph
Math. Subj. Class.: 05B05, 05E30

1 Introduction and preliminaries

A design \mathcal{D} with parameters $t-(v, k, \lambda)$ is a finite incidence structure $(\mathcal{P}, \mathcal{B}, \mathcal{I})$, where \mathcal{P} and \mathcal{B} are disjoint sets and $\mathcal{I} \subseteq \mathcal{P} \times \mathcal{B}$, with the following properties:

1. $|\mathcal{P}|=v$ and $1<k<v-1$,
2. every element (block) of \mathcal{B} is incident with exactly k elements (points) of \mathcal{P},
3. every t distinct points in \mathcal{P} are together incident with exactly λ blocks of \mathcal{B}.

If a design is simple, i.e. does not have repeated blocks, then we can identify blocks with subsets of the point set \mathcal{P} in a natural way. A simple design is called complete if it has $\binom{v}{k}$ blocks, otherwise it is called incomplete. A balanced incomplete block design (BIBD) is an incomplete design with $t=2$. The number of blocks in a block design is denoted by b. Each point is contained in exactly $r=\frac{\lambda(v-1)}{k-1}$ blocks. If $v=b$ (equivalently, $r=k$), a design is called symmetric.

An isomorphism from one design to another is a bijective mapping of points to points and blocks to blocks which preserves incidence. An isomorphism from a design \mathcal{D} onto \mathcal{D} is called an automorphism of \mathcal{D}. The set of all automorphism of the design \mathcal{D} is a group called the full automorphism group of \mathcal{D}, denoted by $\operatorname{Aut}(\mathcal{D})$. Each subgroup of the $\operatorname{Aut}(\mathcal{D})$ is called an automorphism group of \mathcal{D}.

For a symmetric (v, k, λ) - $\operatorname{BIBD} \mathcal{D}=(\mathcal{P}, \mathcal{B}, \mathcal{I})$, design

$$
\operatorname{Res}\left(\mathcal{D}, B_{0}\right)=\left(\mathcal{P} \backslash B_{0},\left\{B \backslash B_{0} \mid B \in \mathcal{B}, B \neq B_{0}\right\}, \mathcal{I}\right)
$$

is a residual design with respect to the block $B_{0} \cdot \operatorname{Res}\left(\mathcal{D}, B_{0}\right)$ is a $(v-k, k-$ $\lambda, \lambda)$-BIBD.

Let $\mathcal{G}=(\mathcal{V}, \mathcal{E}, \mathcal{I})$ be a simple k-regular graph with v vertices. \mathcal{G} is strongly regular with parameters (v, k, λ, μ) if every two adjacent vertices have λ common neighbors and every two non-adjacent vertices have μ common neighbors. An isomorphism from a graph \mathcal{G}_{1} to a graph \mathcal{G}_{2} is a bijection from the set of vertices of \mathcal{G}_{1} onto the set of vertices of \mathcal{G}_{2} that preserves adjacency. An isomorphism from a graph \mathcal{G} to itself is called an automorphism of \mathcal{G}. The set of all automorphisms of \mathcal{G} is called a full automorphism group of \mathcal{G} and it denoted by $\operatorname{Aut}(\mathcal{G})$

In [7], it was shown that there exist 1122 pairwise non-isomorphic 2$(56,12,3)$ designs being the residual designs of the 146 symmetric $(71,15,3)$ designs given in [5] and [6]. Furthermore, 2 new symmetric (71, 15, 3) designs were constructed from codes in [3]. They yield 30 pairwise non-isomorphic 2 -(56, 12, 3) residual designs.

Since then, 22 new symmetric $(71,15,3)$ designs were constructed using a genetic algorithm in [4]. We refer to the designs constructed in [4] as the new symmetric $(71,15,3)$ designs.

Let \mathcal{D} be a (v, k, λ)-BIBD with exactly three distinct intersection numbers $k-r+\lambda, \rho_{1}$ and ρ_{2}, where $\rho_{1}>\rho_{2}$. In this case, as shown in [5], a strongly regular graph can be constructed from this design and it is called the class graph of \mathcal{D}. Two blocks B_{1} and B_{2} of the design \mathcal{D} are equivalent if $\left|B_{1} \cap B_{2}\right| \in$ $\{k, k-r+\lambda\}$ (see [1]). A class graph of \mathcal{D} is a graph whose vertices are equivalence classes and two vertices are adjacent if two blocks representing the corresponding classes have ρ_{1} points in common.

For the computations in this paper we used programs written in GAP [8].

2 (56,12,3)-BIBDs

Let \mathcal{D} be a symmetric design and let B_{0} and B_{1} be blocks of \mathcal{D} belonging to the same orbit of $\operatorname{Aut}(\mathcal{D})$. It is shown in [2, Corollary 1] that the residual designs with respect to the blocks B_{0} and B_{1} are isomorphic. Hence, to construct all residual designs of \mathcal{D}, up to isomorphism, it is sufficient to construct residual designs with respect to representatives of the $\operatorname{Aut}(\mathcal{D})$ orbits.

The 22 symmetric $(71,15,3)$ designs constructed in [4] yield 344 pairwise non-isomorphic (56,12,3)-BIBDs. Including 1122 designs from [7] and 30 designs from [3], this gives 1496 (56,12,3)-BIBDs out of which 1495 are pairwise non-isomorphic. We give the information about these 1495 designs in Table 1.

3 Class graphs of $(56,12,3)$-BIBDs

The 148 symmetric $(71,15,3)$ designs produce exactly six class graphs, as it is established in [5], 6], 7] and [3]. We present the information about these graphs in Table 2.

The 344 pairwise non-isomorphic $(56,12,3)$-BIBDs obtained from 22 new symmetric $(71,15,3)$ designs [4] have intersection numbers of blocks $\{0,1,2,3\}$, $\{0,2,3\}$ and $\{1,2,3\}$. Since $r=\frac{\lambda(v-1)}{k-1}=15$ and $k-r+\lambda=12-15+3=0$, we are interested in intersection numbers $\{0,2,3\}$, where $\rho_{1}=3, \rho_{2}=2$.

$\|\operatorname{Aut}(\mathcal{D})\|$	Aut (\mathcal{D}) structure	number of designs
336	$\left(E_{8}: F_{21}\right) \times Z_{2}$	2
168	$E_{8}: F_{21}$	1
48	$E_{4} \times A_{4}$	18
42	$F_{21} \times Z_{2}$	6
24	$E_{4} \times S_{3}$	12
24	$A_{4} \times Z_{2}$	137
21	F_{21}	1
16	E_{16}	61
12	D_{12}	32
12	A_{4}	20
8	E_{8}	223
6	Z_{6}	120
4	E_{4}	210
3	Z_{3}	101
2	Z_{2}	377
1	I	174

Table 1: 1495 pairwise non-isomorphic (56,12,3)-BIBDs

\mid Aut $(\mathcal{G}) \mid$	Aut (\mathcal{G}) structure	number of graphs
40320	S_{8}	1
288	$\left(A_{4} \times A_{4}\right): Z_{2}$	1
192	$\left(\left(E_{8}: E_{4}\right): Z_{3}\right): Z_{2}$	1
96	$\left(E_{16}: Z_{2}\right): Z_{3}$	1
32	$E_{16}: Z_{2}$	1
12	A_{4}	1

Table 2: Six pairwise non-isomorphic graphs obtained from residual designs of the 148 symmetric $(71,15,3)$ designs given in [5], [6], [7] and [3]

Among 344 designs yielded from [4] there are 28 designs with intersection numbers $\{0,2,3\}$. According to [5], for each of those 28 designs it is possible to construct the corresponding class graph, being a strongly regular graph on 35 vertices, whose vertices are equivalence classes (two blocks B_{1} and B_{2} are equivalent if $\left|B_{1} \cap B_{2}\right|=0$), two vertices being adjacent if two blocks representing the corresponding classes have $\rho_{1}=3$ points in common.

We obtain five pairwise non-isomorphic strongly regular graphs with parameters $(35,16,6,8)$. Each of these strongly regular graphs is isomorphic to one of the graphs from Table 2 with full automorphism groups of orders

4 Conclusion

The 22 new symmetric $(71,15,3)$ designs from [4] do not lead to new class graphs. Hence, up to isomorphism there are exactly six strongly regular graphs with parameters $(35,16,6,8)$ that can be constructed as class graphs of the 170 known symmetric $(71,15,3)$ designs.

Acknowledgement

This work has been fully supported in by Croatian Science Foundation under the projects 4571 and 5713 .

References

[1] H. Beker and W. H. Haemers, 2-designs having an intersection number $k-n$, J. Combin. Theory Ser. A 28 (1980), 64-81.
[2] D. Crnković and S. Rukavina, Some new 2-(17,4,3) and 2-(52,13, 4) designs, Glas. Mat. Ser. III 36(56) (2001), 169-175.
[3] D. Crnković and S. Rukavina, New symmetric (71,15,3) designs, Bull. Inst. Combin. Appl. 94 (2022), 79-94.
[4] D. Crnković and T. Zrinski, Constructing block designs with a prescribed automorphism group using genetic algorithm, J. Combin. Des. 30 (2022), 515-526.
[5] W. H. Haemers, Eigenvalue techniques in design and graph theory, Math. Centre Tracts 121, Mathematisch Centrum, Amsterdam, 1979.
[6] S. Rukavina, Some new triplanes of order twelve, Glas. Mat. Ser. III 36(56) (2001), 105-125.
[7] S. Rukavina, 2-(56,12,3) designs and their class graphs, Glas. Mat. Ser. III 38(58) (2003), 201-210.
[8] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.8.4; 2016. (http://www.gap-system.org)

Tin Zrinski
University of Rijeka, Faculty of Mathematics, Radmile Matejčić 2, Rijeka 51000, Croatia

E-mail address: tin.zrinski@math.uniri.hr

